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Presence of chaos in a self-organized critical system
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We investigate a one-dimensional chain of blocks and springs driven on a surface with friction.
We find that, as the number of blocks N increases, the system has a power law dependence on the
size of slipping events, characteristic of self-organized criticality. The largest Liapunov exponent
also increases with increasing N, approaching an asymptotic value at large N. Thus, contrary to
a previous conjecture [P. Bak and C. Tang, J. Geophys. Res. B 94, 15635 (1989)], strong chaos
(positive Liapunov exponent) and self-organized criticality can coexist.

PACS number(s): 05.40.+j, 64.60.Ht, 91.30.Bi

Dissipative driven systems with many degrees of free-
dom can naturally reach a critical state characterized
by power law distributions of avalanchelike events. The
power laws are limited only by the size of the system and
of its elementary cell. This phenomenon was called self-
organized criticality (SOC) by Bak, Tang, and Wiesen-
feld [1]. It has been observed in several systems, such as
models for sandpiles [1], models for earthquakes [2], and
charge density waves [3].

It was reported by Bak, Tang, and Chen that, in the
self-organized critical systems that they examined, the
divergence of nearby trajectories followed a power law
[2]. This implies that the largest Liapunov exponent
(LLE) of the system is zero. The Liapunov exponent
is a quantity widely used in the study of dynamical sys-
tems [4]. A system is generally considered to be chaotic if
the LLE is greater than zero, in which the divergence of
nearby trajectories occurs exponentially. Bak, Tang, and
Chen called power law divergence of trajectories “weak
chaos,” and conjectured that this was a universal prop-
erty of SOC systems [2]. SOC systems in which the LLE
was found to be zero were cellular automaton models for
earthquakes [2], cellular automaton model for sandpiles
[5], and, more recently, a coupled map lattice [6].

In this paper we show that SOC does not necessar-
ily imply a zero LLE. We study a mechanical system
governed by coupled ordinary differential equations and
show that chaos and a nonzero LLE can coexist. The
system we study was introduced in 1967 by Burridge
and Knopoff {7] as a mechanical model for the stick-slip
behavior observed in earthquake faults. It consists of
blocks connected by springs and driven with constant
velocity on a surface with friction. Only the first element
is connected to the driving mechanism. This system has
been called the “train model” [8]. Burridge and Knopoff
studied experimentally a small chain of eight blocks of
this model and showed that its dynamics is character-
ized by the presence of sudden displacements of a group
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of blocks (avalanches or quakes), which come to rest after
a certain time. This is what is called stick-slip dynamics.
They observed a power law behavior for the distribution
(frequency) of the potential energy released during the
avalanches. A numerical study of the avalanche sizes in
much larger chains was performed in [8]. It was shown
that the train model presents SOC. Recently, an analy-
sis of the nonlinear dynamics of a system of two blocks
in the train model was done [9]. It was found that this
small system presents a very rich dynamics, with peri-
odic, quasiperiodic, and chaotic orbits. Several routes
to chaos were identified, such as period-doubling bifur-
cations [10] and two types of intermittencies [11]. This
system is therefore a good test bed to examine the LLE
as the system size increases. Another spring-block sys-
tem introduced by Burridge and Knopoff has received
considerable attention recently [12,13], with its chaotic
dynamics being studied in [14-16]. In this other model
SOC is not observed, since the power law distributions
have a limited extent [12,13], i.e., a correlation length is
observed in it, which is smaller than the size of the chain.
Therefore, we do not examine the Liapunov exponent of
this alternative model.

In this paper we study the train model over a range of
system sizes, from the chaotic behavior observed in small
systems to the SOC dynamics found in large systems,
to show how the LLE evolves as the size of the chain
increases. Each block of the system has mass m and
the springs have an elastic constant k. The first block
is pulled with constant velocity v and the friction force
F between each block and the surface is a function of
the instantaneous velocity of the block with reference to
a characteristic velocity v, (see Fig. 1 of Ref. [8]). The
equations of motion for the blocks are given by

X.‘i =k(Xj1 —2X; + X;-1) — F(Xj/”c)a (1)

where X; denotes the displacement of the block measured
with respect to the position where the sum of the elastic
forces on it is zero. These equations are applicable only
when the respective block is moving and the sum of the
elastic forces in the block is larger than the maximum
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force of static friction. If these conditions are not met we
simply have X; = 0. Here we consider open boundary
conditions, with X¢ = vt and Xy = Xn. If we write
the friction force as F(Xj/vc) = F0<I>(Xj/vc), where
®(0) = 1, and introduce the variables 7 = wpt, w? =
k/m, and U; = kX;/Fy, Eq. (1) can be written in the
dimensionless form [8]

Uj = Uj+1 - 2U_7' + Uj_l —_ @(Uj/l/c), (2)

with v = v/Vp, ve = v, /Vp, and Vo = Fy/vVkm. Overdots
now denote differentiation with respect to 7. In a sys-
tem of a single block the quantity Fy/w, is the maximum
displacement of the pulling spring before the block starts
to move; in the absence of dynamical friction 27/w, and
Vo are, respectively, a characteristic period of oscillation
of the block and the maximum velocity it attains. The
boundary conditions are Uy = v7 and Uny41 = Un. This
system is therefore described by two dimensionless pa-
rameters v and v.. The system is 2N dimensional since
its evolution is completely specified by giving the ini-
tial positions and velocities of the blocks. We use the
velocity-weakening friction force given by [12]

sgn(U)

e(U/ve) = m,

®3)

which is a simple nonlinear function. The friction force
is the only nonlinear element in this model.

The stick-slip motion observed in the system occurs in
the following way. Suppose that at the initial instant all
the blocks are at rest. As the time evolves the first spring
is stretched by the driving mechanism until the force ap-
plied to the first mass exceeds the static frictional force,
at which time the first mass moves. It slips a certain
distance and stops. This reduces the extension in the
first spring, but at the same time stretches the second
spring. The one-block avalanches continue to occur until
the spring force on the second block exceeds the static
frictional force. Then an avalanche involving two blocks
is observed and the spring that connects the second to
the third block is stretched. Thus avalanches involving
three, four, and more blocks appear during the time evo-
lution. Finally, we see a larger avalanche involving all the
blocks of the chain, which rebuilds the system. A new
sequence of avalanches starts. Note that in this model
an avalanche that involves the ith element of the chain
necessarily involves all the blocks with 7 < <.

We have done numerical studies in a wide range of
parameter values of the frequency of the avalanches as
a function of the number of blocks involved in it and
as a function of the displacement of the blocks. We
have found power law distributions in both cases [8] and
our numerical studies also show power law behavior for
the distribution of the duration of the avalanches. In
this way, we show that the train model displays SOC.
A typical solution of the frequency of the avalanches
p(M > M') in which the displacement M of the blocks is
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greater than M’ is shown in Fig. 1. In the numerical sim-
ulations of this paper we have generally started the sys-
tem with the blocks at rest and with the sum of the elastic
forces in each block equal to zero. Other initial conditions
were considered and the results did not change. Before
we start to compile statistics we let the system evolve
until it reaches a statistical stationary state.

For a small system we can use the standard techniques
of chaos theory to study the change of the dynamics when
the nonlinearity increases, i.e., increasing v, 1, and fixing
the pulling velocity. This is usually done by plotting bi-
furcation diagrams. For a two-block system, a Poincaré
section [4] lowers its dimensionality from 4 to 3, for which
the attractors are still difficult to visualize. We therefore
display the motion of the center of mass, which we have
verified gives the same topology of the dynamics of the
two-block system. However, we do not expect that this
approach would always be good for a system with a large
number of blocks. We have found [9] that for N = 2
the dynamical evolution of the block j occurs around a
point, here denoted by Uy, that corresponds to its coordi-
nate in the unstable solution in which the system moves
with constant velocity equal to the pulling velocity. The
coordinate of the center of mass with respect to U¥ is

Uy —Ug + Uy — Ug
4
: : ()

W =

with Uf = -2/(1+v/v.)+vr and U§ = —=3/(1+v/v.) +
v7. We take the Poincaré section of W at W = 0. In
this way, we reduce the dynamics to the study of a sin-
gle variable. We show in Fig. 2 a bifurcation diagram
for the pulling velocity v = 0.1.. On the = axis we have
v ! and on the y axis we plot W at W = 0. In the dia-
grams we can see windows of periodic motion and regions
where the motion is nonperiodic. We find regions with
period doubling bifurcation route to chaos [10], as well
as intermittencies of types I and II [11].

104 o B
10° | 3
=
S, 10° E E
a
10-7 - -
10-8 al sl al ! .
1 100 102 10° 10* 10° 10°

M

FIG. 1. Frequency of the avalanches p(M > M') in which
the displacement of the blocks M is greater than M’'. The
parameters are v ' = 0.8, v = 0.1, and N = 200. The
number of avalanches is 30000 and p(M > M') was divided
by the number of blocks in the chain.
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FIG. 2. Bifurcation diagram of the velocity of center of
mass W on the surface of section W = 0 as a function of v;*
for v =0.1 and N = 2.

To calculate the LLE we use the standard algorithm
introduced in [17]. The method is the following. Denote
by U(t) the 2IN-dimensional vector that gives the trajec-
tory of the attractor in phase space. Then, at a given
instant to take a point W(to) = U(to) + A(to), where
A(to) is an arbitrary vector with a small norm. Next,
evolve both W (¢o) and U(tg). Then, calculate the sepa-
ration A(t;) = W (¢1) — U(¢1) of the orbits after a small
time interval 6t = t; — tg. Since the LLE is a function of
the average separation of nearby trajectories along the at-
tractor, it is necessary to renormalize A(¢;) to form the
vector W'(t1) = U(t1) + eA(t1)/|A(t1)], where e < 1
and || denotes the norm. Now evolve W'(¢;) and U(t;)
and calculate the new separation of the two orbits A(¢3).
The process is reapeated p times. The LLE is given by

A = o 3 log, [0, )

i=1,p

which will converge for large p.

In Fig. 3 we show (solid line) A(™) for the bifurcation
diagram displayed in Fig. 2. We see regions in which the
motion is nonperiodic and A(™) = 0. This corresponds
to the quasiperiodic motion observed for small v 1. The
entrance into chaos (A(™) > 0) for this system occurs
around v ! = 0.146. Several windows of periodic motion
are found, which give A(™) = 0, as expected in flows. Our
studies have shown that the LLE is not very sensitive to
the pulling velocity if v is not large and v ! not very
small [9].

The investigation of the LLE in larger systems show
that if periodic motion exits at all, they are limited to
very narrow windows. We have not been able to see any
periodic window for systems with N > 2. We found
quasiperiodicity when v ! is small; at larger nonlinear-
ity (larger v;'!) only chaotic motion was found. For a
fixed pulling velocity, the value of v;"!, where the first
entrance into chaos occurs, decreases as IV increases. As
an example, we show in Fig. 3 (dashed line) the LLE for
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FIG. 3. The largest Liapunov exponent as a function of
v;! with v = 0.1 for N = 2 (solid line), which corresponds to
the bifurcation diagram shown in Fig. 2, and N = 10 (dashed
line). The calculation of A(™) is done for an integration time
7 = 30 000N, with time steps of A7 = 0.01 and perturbations
to the position and velocities of each block equal to 107°.

a system with ten blocks, where the entrance into chaos
occurs around v ! = 0.017. Thus, for increasingly large
systems the chaotic behavior fills an increasingly large
part of the parameter space.

In Fig. 4 we show how the LLE varies with an increas-
ing number of blocks. We plot three cases for different pa-
rameter values. In all cases, we see that for small chains
the Liapunov exponent tends to increase with N, with
some fluctuations. As the chain gets larger we find that
within the statistical error, the LLE exponent asymp-
totes to a constant value. For large N the error bars
(not shown) are smaller than the symbol size. Since for
large chains the presence of SOC is found (see Fig. 1), we
conclude that SOC is not always characterized by a zero
LLE.

The LLE can also be calculated by the expression
A0) = Dic1p logz(]w?) |)/p, where w; are the eigenvalues
of the product of the Jacobian matrices for a given orbit.
For aperiodic orbits, as well as for periodic ones, the Li-
apunov exponents will converge when the limit p — oo
is taken. For numerical calculations the definition given
above is impractical because the product of Jacobian ma-
trices will exhibit underflow or overflow problems as p in-
creases. This problem can be avoided by using a method
introduced by Sano and Sawada [18], where after each in-
tegration step a Gram-Schmidt orthonormalization pro-
cedure is used to avoid the underflow or overflow of the
evolved vectors. An analytical calculation of the LLE us-
ing this method becomes increasingly cumbersome for an
arbitrary orbit as p increases. However, we can obtain an
analytical expression for the LLE at the fixed point for
which all the blocks move with constant velocity, equal
to the pulling velocity. If we linearize the friction force
around the pulling velocity, using

A=d®/dU|;_, = —ve/(ve +v)?, (6)

we have for the linearized equation of motion
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FIG. 4. The largest Liapunov exponent as a function of N
for 7! = 0.8 and v = 0.1 (diamonds), »; ' = 0.8 and v = 0.01
(crosses), vo ! = 1.5 and v = 0.1 (squares). As in Fig. 3, Alm)
is calculated for an integration time 7 = 30 000N, with time
steps of AT = 0.01 and perturbations to the position and
velocities of the blocks equal to 107°.

Uj =Uj;1 —2U; + U1 + AU:7 (7
Assume that U; has a solution of the type
U; = usin(kaj + ¢)e“7, (8)

where a is the spacing between masses when the elastic
forces are in equilibrium. Without losing generality we
can take a = 1. Substituting this solution into Eq. (7)
we find that the eigenvalues of the solution with uniform
velocity are given by

A+ /A2 —8(1 —cosk) o
w= 5 . (9)

In the reference frame that moves with velocity v, the
boundary conditions are expressed as Uy = 0 and
Uny1 = Un. The first condition gives ¢ = 0. The
second condition implies that k(N + 1) = kN + 27a
or (1+ 2a)m — k(N + 1) = kN, with a being an inte-
ger. The first case is not interesting because U; becomes
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independent of j. The second case gives

(1+ 2a)m

k=SNt1

(10)
with « = 0,1,..., N — 1, since we must have N normal-
mode frequencies. Substituting this solution into Eq. (9),
one finds that the eigenvalue with largest magnitude w(™)
occurs when o« = (N — 1)/2. It is not difficult to show
that Re(w(m)) > 0, i.e., the solution is unstable, and

/ N7
(m)| — _ 7
|w'™| 2 —2cos N+ 1

The largest eigenvalue is a monotonically increasing func-
tion of N and converges to 2 as N gets large. Since
for this orbit A(™) = log, |w(™)|, we have that A(™) ap-
proaches one as IV increases. Consequently, the LLE for
this orbit has roughly the same qualitative behavior as
A(™) shown in Fig. 4. The value of A(™) for the unsta-
ble orbit is larger than the numerical asymptotic value of
A(™M) ~ 0.1 found over the chaotic orbit, which suggests
the importance of the unstable fixed point in the chaotic
dynamics.

We have also numerically studied the second largest
Liapunov exponent. Somewhat surprisingly we found it
to be identically zero for all N and for representative
parameters. This nongeneric result emphasizes the need
for analyzing specific systems to obtain the relationship
between SOC and chaos.

In summary, we have studied a mechanical system
governed by coupled ordinary differential equations that
manifests a power law relationship of number of events
versus event size, which is taken as the definition of self-
organized criticality. We have shown that the critical dy-
namics of the SOC attractor has the largest Liapunov ex-
ponent, which approaches a finite value as the system size
N becomes larger. Consequently, the conjecture [2] that
the SOC attractor has power law divergence of nearby
trajectories is not universally true.
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